Monday, 25 September 2017

Double Moving Durchschnitt Rumus


Double Exponential Moving Averages Explained Traders haben sich auf gleitende Durchschnitte zu helfen, festzustellen, hohe Wahrscheinlichkeit Handel Einstiegspunkte und profitablen Exits seit vielen Jahren. Ein bekanntes Problem mit sich bewegenden Durchschnitten ist jedoch die schwere Verzögerung, die in den meisten Arten von gleitenden Durchschnitten vorhanden ist. Der doppelte exponentielle gleitende Durchschnitt (DEMA) liefert eine Lösung durch Berechnen einer schnelleren Mittelungsmethode. Geschichte des doppelten Exponential Moving Average In der technischen Analyse. Bezieht sich der Begriff gleitender Durchschnitt auf einen Durchschnittspreis für ein bestimmtes Handelsinstrument über einen bestimmten Zeitraum. Zum Beispiel berechnet ein 10-Tage-Gleitender Durchschnitt den durchschnittlichen Preis eines bestimmten Instruments in den letzten 10 zehn Tagen einen 200-Tage gleitenden Durchschnitt berechnet den durchschnittlichen Preis der letzten 200 Tage. Jeden Tag schreitet die Rückblickperiode auf Basisberechnungen der letzten X-Anzahl von Tagen vor. Ein gleitender Durchschnitt erscheint als glatte, geschwungene Linie, die eine visuelle Darstellung des längerfristigen Trends eines Instruments liefert. Schnellere gleitende Durchschnitte, mit kürzeren Rückblickperioden, sind choppierere langsamere gleitende Durchschnitte, mit längeren Rückblickperioden, sind glatter. Da ein gleitender Durchschnitt ein rückwärts gerichteter Indikator ist, ist er rückläufig. Der in Abbildung 1 gezeigte doppelte exponentielle gleitende Durchschnitt (DEMA) wurde von Patrick Mulloy entwickelt, um die Verzögerungszeit zu reduzieren, die bei herkömmlichen Bewegungsdurchschnitten festgestellt wurde. Es wurde erstmals im Februar 1994, Technical Analysis of Stocks amp Commodities Magazin in Mulloys Artikel Smoothing Daten mit schneller Moving Averages eingeführt. Abbildung 1: Dieses 1-minütige Diagramm des e-mini Russell 2000-Futures-Kontrakts zeigt zwei unterschiedliche doppelte exponentielle gleitende Mittelwerte, wobei eine 55-Periode in blau erscheint, Eine 21-Periode in rosa. Berechnung eines DEMA Wie Mulloy in seinem ursprünglichen Artikel erklärt, ist die DEMA nicht nur eine doppelte EMA mit der doppelten Verzögerungszeit einer einzelnen EMA, sondern ist eine zusammengesetzte Implementierung von Einzel - und Doppel-EMAs, die eine andere EMA mit weniger Verzögerung erzeugen als das Original zwei. Mit anderen Worten, die DEMA ist nicht einfach zwei EMAs kombiniert oder ein gleitender Durchschnitt eines gleitenden Durchschnitts, sondern ist eine Berechnung sowohl einzelner als auch doppelter EMAs. Fast alle Trading-Analyse-Plattformen haben die DEMA als Indikator, der zu den Diagrammen hinzugefügt werden kann. Daher können Händler die DEMA nutzen, ohne die Mathematik hinter den Berechnungen zu kennen und ohne irgendeinen Code schreiben oder eingeben zu müssen. Vergleich der DEMA mit traditionellen Bewegungsdurchschnitten Die gleitenden Durchschnitte sind eine der populärsten Methoden der technischen Analyse. Viele Händler verwenden sie, um Trendumkehrungen zu erkennen. Vor allem in einem gleitenden Durchschnitt Crossover, wo zwei gleitende Durchschnitte von verschiedenen Längen auf ein Diagramm gelegt werden. Punkte, wo die gleitenden Durchschnitte kreuzen, können Kauf - oder Verkaufsgelegenheiten bedeuten. Die DEMA kann Händler helfen, Rückschläge früher zu erkennen, weil es schneller ist, auf Veränderungen in der Marktaktivität zu reagieren. Abbildung 2 zeigt ein Beispiel für den e-mini Russell 2000 Futures-Kontrakt. Diese Minute-Diagramm hat vier gleitende Mittelwerte: 21-Periode DEMA (rosa) 55-Periode DEMA (dunkelblau) 21-Periode MA (hellblau) 55-Periode MA (hellgrün) Abbildung 2: Diese 1-minütige Tabelle von Zeigt der e-mini Russell 2000 Futures-Kontrakt die schnellere Reaktionszeit der DEMA bei Einsatz in einem Crossover. Beachten Sie, dass der DEMA-Crossover in beiden Fällen deutlich früher erscheint als die MA-Crossover. Die erste DEMA Crossover erscheint bei 12:29 und die nächste Bar öffnet zu einem Preis von 663,20. Die MA-Crossover, auf der anderen Seite, Formen um 12:34 und die nächsten Bars Eröffnungspreis bei 660,50. Im nächsten Satz von Frequenzweichen erscheint die DEMA-Überkreuzung bei 1:33, und die nächste Leiste öffnet bei 658. Die MA dagegen bildet bei 1:43, wobei sich die nächste Leiste bei 662,90 öffnet. In jedem Fall bietet die DEMA-Überkreuzung einen Vorteil beim Einsteigen in den Trend früher als der MA-Crossover. (Für mehr Einblick, lesen Sie die Moving Averages Tutorial.) Handel mit einem DEMA Die oben genannten gleitenden Durchschnitt Crossover Beispiele veranschaulichen die Wirksamkeit der Verwendung der schnelleren doppelt exponentiellen gleitenden Durchschnitt. Zusätzlich zur Verwendung der DEMA als Standalone-Indikator oder in einem Crossover-Setup kann die DEMA in einer Vielzahl von Indikatoren verwendet werden, wobei die Logik auf einem gleitenden Durchschnitt basiert. Technische Analysewerkzeuge wie Bollinger Bands. (MACD) und der dreifach exponentiellen gleitenden Durchschnitt (TRIX) basieren auf gleitenden Durchschnittstypen und können modifiziert werden, um eine DEMA anstelle anderer traditionellerer Arten von gleitenden Durchschnittswerten einzufügen. Das Ersetzen der DEMA kann Händler helfen, unterschiedliche Kauf - und Verkaufsgelegenheiten zu lokalisieren, die vor denen liegen, die von den MAs oder EMAs, die traditionell in diesen Indikatoren verwendet werden, zur Verfügung gestellt werden. Natürlich immer in einen Trend eher früher als später führt in der Regel zu höheren Gewinnen. Abbildung 2 verdeutlicht dieses Prinzip - wenn wir die Crossovers als Kauf - und Verkaufssignale nutzen wollten. Würden wir die Trades deutlich früher bei der Verwendung der DEMA Crossover im Gegensatz zu den MA Crossover geben. Bottom Line Trader und Investoren haben lange bewegte Durchschnitte in ihrer Marktanalyse verwendet. Gleitende Durchschnitte sind ein weit verbreitetes technisches Analyse-Tool, das ein Mittel zur schnellen Betrachtung und Interpretation des längerfristigen Trends eines bestimmten Handelsinstruments bietet. Da bewegte Durchschnitte durch ihre Natur sind nacheilende Indikatoren. Ist es hilfreich, den gleitenden Durchschnitt zu optimieren, um einen schnelleren, reaktionsfähigeren Indikator zu berechnen. Der doppelte exponentielle gleitende Durchschnitt bietet Händlern und Investoren einen Überblick über den längerfristigen Trend mit dem zusätzlichen Vorteil, dass er ein schneller gleitender Durchschnitt mit weniger Verzögerungszeit ist. (Für verwandte Lesen, werfen Sie einen Blick auf Moving Average MACD Combo und einfache Vs. Exponential Moving Averages.) Doppel Moving Average vs Doppel exponentielle Glättung Sebelumnya Telah dibahas tentang Teknik permalan Prognose Sederhana einzigen gleitenden Durchschnitt dan einfache exponentielle Glättung. Akan tetapi pada kenyataannya banyak ditemui Daten Zeitreihe yang memiliki Trend liner, oleh karena itu perlu suatu teknik untuk mengatasinya. Teknik permalan sederhana yang bisa mengatasinya yaitu doppelten gleitenden Durchschnitt dan doppelte exponentielle Glättung. Sebagai Informasi, sebenarnya terdapat banyak Teknik Prognose kompleks Yang dapat mengatasi masalah Trend linier yaitu dengan cara mentransformasikan Daten Agar stasioner kemudian diterapkan Teknik Prognose tertentu, seperti ARIMA, ARCHGARCH, dll. Grafik di bawah ini menunjukan kecenderungan omzet Wiederherstellung yang memiliki Trend meningkat. Doppelte Bewegung Durchschnittlich Pada teknik ini dilakukan penghitungan rata-rata bergerak sebanyak dua kali kemudian dilanjutkan dengan meramal menggunakan suatu persamaan tertentu. Perhatikan tabel di atas, pada teknik ini proses mencari nilai rata-rata bergerak dilakukan sebanyak dua kali. Pada kolom Beweglicher Durchschnitt 3t baris 1 dan 2 kosong, sedangkan baris ketiga ialah nilai rata-rata dari nilai faktual omzet baris 1, 2, dan 3 (jumlah omzet bulan Juni-Agustus 2011 dibagi tiga (131130125) 3 128,667). Baris berikutunya juga dilakukan dengan cara perhitungan yang sama. Selanjutnya pada kolom Durchschnittlich. Dilakukan penghitungan rata-rata bergerak dengan cara yang sama pada kolom sebelumnya. Namun, pada kolom ini yang menjadi acuan penjumlahan nilai yaitu nilai pada kolom gleitende durchschnittliche 3t dibagi dengan periode gleitender durchschnitt. Misalnya, nilai 127,444 pada bulan Oktober 2011 kolom doppelt beweglicher Durchschnitt diperoleh dari rata-rata bergerak bulan Juli-Oktober 2011 (128,667127126,667 dibagi 3). Lakukan Penghitungan Serupa Pada Baris-Baris Berikutnya Hingga Pada Baris Daten Terakhir (Sebelum Periodeyang Akan Diramalkan). Pada kolom bei, lakukan penghitungan dengan rumus di atas. Misalkan, angka 125,88889 pada baris bulan Oktober 2011 kolom bei diperoleh dari penghitungan 2 x 126,6667 8211 127,4444. Lakukan juga pada baris-baris berikutnya. Untuk kolom bt, lakukan penghitungan juga berdasarkan rumus di atas. Ingat bahwa nilai n ialah jumlah periode yang digunakan dalam gleitender Durchschnitt. pada kasus ini nilai n yaitu 3. Selanjutnya hitung nilai ramalanforecast menggunakan Formel di atas dengan nilai p1, artinya kita hanya Akan meramal sebanyak satu periode kedepan saja (meramal omzet Pada bulan Januari 2013). Ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram ram.......................... Sehingga, nilai ramalan omzet bulan Januar 2013 sebesar 157,11 juta rupiah diperoleh dari penjumlahan nilai bei dan bt bulan Desweiteren 2012 (153,88893,2222 (p1)). Selenjutnya kolom und dan et quadratischen digunakan untuk menghitung RMSE. Nilai RMSE yang didapat yaitu 3,8086. Double Exponential Glättung Teknik ini hampir sama dengan teknik double gleitenden Durchschnitt yaitu dua kali dalam melakukan penghitungan. Formel Formel yang digunakan antara lain: Perhatikan pada baris pertama kolom exponentielle Glättung (At) hingga bei memiliki nilai yang sama dengan nilai omzet faktual bulan Juni 2011, nilai ini merupakan Standard. Selanjutnya nilai baris Kedua kolom Bei dihitunga menggunakan rumus di atas, Am omzet bulan Juli 2011 130.600 juta diperoleh Dari (w0,4) dikali nilai omzet faktual bulan Juli 2011 (130) ditambah (1-w0,6) dikali nilai Bei omzet bulan Juni 2011 (131), atau secara matematis ditulis 0,4 x 130 (1-0,4) x 131 130,600 (juta rupiah). Kemudian lakukan penghitungan serupa pada baris-baris Berikut. Setelah itu, lakukan penghitungan nilai doppelt exponentielle Glättung (At) menggunakan rumus di atas. Cara penghitungannya sama dengan exponentielle Glättung (At), tapi melibatkan Daten hasil penghitungan At. Nilai Bei omzet bulan Juli 2011 (130,840) diperoleh dari hasil 0,4 x 130,600 (1-0,4) x 131). Beginupun dengan penghitungan pada baris berikutnya sama. Mencari nilai bei dan bt sama seperti teknik doppelten gleitenden Durchschnitt. Hanya saja pada bt, dikalikan dengan perbandingan penimbang w1-w. Ikuti rumus di atas untuk mencari nilai bei dan bt. Kemudian, lakuka n peramalan Vorhersage sesuai rumus yang ada. Hasil ramalan Periode t1 yaitu penjumlahan nilai bei dan bt (p1) Periode t. Nilai p1 karena pada kasus ini hanya ingin dicari nilai ramalan satu periode kedepan. Ramalan omzet bulan Januar 2013 yaitu (atdes.2012152.260) (btdes.2011 (p1) 2,024 (1)) 154,2833 (juta rupiah). Kemudian carilah nilai RMSE berdasarkan nilai und dan et Quadrat. Nilai RMSE dengan metode doppelt exponentielle Glättung yaitu 3,133. Jika dibandingkan antara metode doppelt gleitenden Durchschnitt als doppelte exponentielle Glättung. Maka metode doppelte exponentielle Glättung lebih baik untuk meramalkan karena memiliki nilai RMSE (3,133) Yang lebih kecil dari nilai RMSE Metode doppelter gleitender Durchschnitt (3.8086). Demikian, mohon koreksinya demi kebenaran isi materi di atas. Sumber lengkapnya dapat dibaca pada Enders, Walter. Angewandte Ökonometrische Zeitreihe Zweite Auflage. New Jersey: Willey. Dan Yulianto, M. A. 2011. Dasar-dasar Betrieb Forschung untuk Pengambilan Keputusan: Edisi Kedua. Jakarta: Sekolah Tinggi Ilmu Statistik. Peramalan Sederhana (Single Moving Average vs Einzel exponentielle Glättung) Mungkin sebagian besar diantara kita pernah mendengar tentang Teknik peramalan. Tentunya bukan dukun peramal, melainkan tekni untuk meramalkan prognose suatu daten deret waktu zeitreihen. Peramalan merupakan suatu teknik yang penting bagi perusahaan atau pemerintah dalam mengambil kebijakan. Dalam meramal suatu nilai pada masa yang kan datang bukan berarti hasil yang didapatk ialah sama persis, melainkan merupakan suatu pendekatan abwechselnd yang lumrah dalam ilmu statistik. Pada tulisan ini akan dibahas contoh kasus peramalan menggunakan teknik Beweglicher Durchschnitt Dan Exponentielle Glättung. Kedua teknik ini merupakan tekni prognose yang sangat sederhana karena tidak melibatkan asumsi yang kompleks seperti pada tekni prognose ARIMA, ARCHGARCH, ECM, VECM, VAR, dsb. Meskipun demikian, asumsi Daten stasioner haruslah terpenuhi untuk meramal. Beweglicher Durchschnitt merupakan teknik peramalan berdasarkan rata-rata bergerak dari nilai-nilai masa lalu, misalkan rata-rata bergerak 3 tahunan, 4 bulanan, 5 mingguan, dll. Akan tetapi teknik ini tidak disarankan untuk Daten Zeitreihe yang menunjukkan adanya pengaruh Trend dan musiman. Moving durchschnittlich terbagi menjadi einzigen gleitenden Durchschnitt als doppelten gleitenden Durchschnitt. Exponentielle Glättung . hampir sama dengan gleitenden Durchschnitt yaitu merupakan Teknik prognostiziert Yang Sederhana, tetapi Telah menggunakan Suatu penimbang dengan besaran antara 0 hingga 1. Jika nilai w mendekati nilai 1 maka hasil Prognose cenderung mendekati nilai obseervasi, sedangkan jika nilai w mendekati nilai 0, maka hasil Prognose mengarah Ke nilai ramalan sebelumnya. Exponentielle Glättung terboi menjadi einzigen exponentiellen Glättung als doppelte exponentielle Glättung. Kali ini, akan dibahas perbandingan metode einzeln gleitenden Durchschnitt dengan einzigen exponentiellen Glättung. Pemimpin Safira Strand Resto ingin mengetahui omzet restoran Pada Januari 2013 Ia meminta sang manajer untuk mengestimasi nilai tersebut dengan Daten omzet bulanan Dari bulan Juni 2011 sampai Desember 2012 Berbekal pengetahuan di bidang statistik, sang manajer melakukan forcast dengan metode Einzel Durchschnitt 3 bulanan dan bewegen Einzelne exponentielle Glättung (w0,4). Einzelne Moving Durchschnittliche Pada tabel di atas prognose ramalan bulan September 2011 yaitu 128,667 juta rupiah diperoleh dari penjumlahan omzet bulan Juni, August, Agustus 2011 dibagi dengan angka gleitender Durchschnitt (m3). Angka vorausschau pada bulan Oktober 2011 yaitu 127 juta rupiah diperoleh dari penjumlah omzet bulan Juli, Agustus, September 2011 dibagi dengan angka gleitender durchschnitt tiga bulanan (m3). Perhitungan serupa dilakukan hingga ditemukan hasil Prognose bulan Januari 2013 sebesar 150.667 juta Rupiah. Dapat diinterpretasikan bahwa omzet bulan Januari 2013 diperkirakan senilai 150, 667 juta Rupiah atau mengalami penurunan sebesar 1333 juta Rupiah dibanding dengan omzet Desember 2012 sebesar 152 juta Rupiah. Perhatikan baris pada bulan Juni-Agustus 2011 kolom Vorhersage hingga Fehler tidak memiliki nilai, karena peramalan pada bulan-bulan tersebut tidak tersedia Daten gleitenden Durchschnitt 3 bulanischen, bulan sebelumnya. Selanjutnya untuk Melihat kebaikan hasil ramalan digunaka RMSE (root mean square error) Untuk RMSE perhitungan, Mula-Mula dicari nilai Fehler atau Selisih antara nilai aktual dan ramalan (omzet Prognose), kemudian kuadrat nilai-nilai tersebut untuk Masing-Masing Daten bulanan. Lalu, jumlahkan seluruh nilai Fehler yang telah dikuadratkan. Terakhir geschlagen nilai RMSE dengan rumus di atas atab lebih gambangnya, bagi nilai penjumlahan Fehler yang telah dikuadratkan dengan banyaknya beobachtungen dan hasilnya lalu di akarkan. Pada tabel di atas, banyaknya observasi yaitu 16 (mulai dari September 2011-Desember 2012). Einzelne Exponentialglättung. Selanjutnya kita akan melakukan peramalan dengan metode Einzelne Exponentialglättung. Metode ini menggunak nilai penimbang yang dapat diperoleh dari operationen statistik tertentu (bisa proporsi tertentu), namun dapat juga ditentukan oleh peneliti. Kali ini Akan digunakan nilai w 4. Prognose W0,4 YCAP (t1) (juta rp). Nilai ramalan Pada bulan Juni 2011 yaitu 137.368 juta Rupiah diperoleh Dari rata rata omzet Dari bulan Juni 2011 hingga bulan Desember 2012 Nilai ramalan Pada bulan Juli 2011 yaitu 134.821 juta Rupiah diperoleh Dari perhitungan dengan rumus di atas, dengan kata gelegen nilai ramalan bulan Juli 2011 diperoleh Dari hasil kali w0,4 dan nilai aktual omzet bulan Juli 2011 dijumlahkan dengan hasil kali (1-0,4) serta Nila ramalan Bulan Juni 2011 von sebesar als Favorit markiert 134,821 juta rupiah. Lakukan perhitungan tersebut hingga mendapatkan angka ramalan untuk bulan Januari 2013 Hasil ramalan omzet untuk bulan Januari 2013 yaitu 149.224 juta Rupiah atau turun sebesar 2776 juta Rupiah. Kemudian hitung nilai RMSE dengan rumus seperti pada perhitungan RMSE gleitenden Durchschnitt. Hanya saja jumlah observasi berbeda. Pada Tabel di atas Anzahl der Beiträge obervasi (m) yaitu 19 Lebih banyak dibanding dengan metode einfachen gleitenden Durchschnitt 3 bulanan (16) karena Pada metode eksponensial perhitungan ramalan dapat dimulai Dari Daten Pada periode awal. RMSE metode einzelne exponentielle Glättung sebesar 1,073. Selanjutnya dari kedua metode di atas akan dibandingkan mana hasil yang terbaik. Untuk hal tersebut maka, bandingkan nilai RMSE dari kedua metode. Metode daneben RMSE terkecil dapat dinyatakan sebagai metode terbaik untuk meramal. RMSE mov. average 0,946, RMSE exp. smoothing 1,073. RMSE mov. average lt RMSE exp. smoothing. Kesimpulanya bahwa metode gleitenden Durchschnitt Lebih baik dalam melakukan peramalan, sehingga omzet Pada bulan Januari 2013 diperkirakan sebesar 150.667 juta Rupiah (meskipun memiliki nilai Yang Lebih rendah daripada bulan sebelumnya). (Untuk materi yang lebih jelas, silakan dicari di buku-buku referensi Analisis Zeitreihe, misalnya, Enders, Walter 2004. Angewandte ökonometrische Zeitreihe Zweite Auflage New Jersey: Willey Kalo contoh soal dalam tulisan ini, saya kutip dari buku modul Kuliah

No comments:

Post a Comment